Mis A

Instituut

Monitoring Infrastructure (MIS)
Software Architecture Document

Version 1.1

Monitoring Infrastructure (MIS)

Version: 1.1

Software Architecture Document

Date: 8-10-2004

Revision History

Date Version Description Author
28-9-2004 1.0 Created Peter Fennema
8-10-2004 11 Processed review comments Peter Fennema
Public OTelematica Instituut, 2004 Page 2 of 16

Monitoring Infrastructure (MIS)

Version: 1.1

Software Architecture Document

Date: 8-10-2004

1. Introduction

11 Scope
1.2 Purpose
1.3 Overview

1.4 Colour convention

2. ldentification of stakeholders
21 Purpose of the system

2.2 Stakeholders

3. Monitor example

Table of Contents

4. Architectural Goals and Constraints

41 Gods
4.2 Constraints

5. Introduction to views

6. RuntimeView
6.1 Introduction

6.2 Component types and connector types

6.3 View description

7. Monitor Design View

7.1 Introduction
7.2 View description

8. Logica View

8.1 Introduction
8.2 View description

8.3 Package descriptions
8.3.1 Eventspackage

8.3.2 Monitorclient package

9. Detaled Runtime View
9.1 Introduction

9.2 View description: Eventrouter package contribution
9.3 View description: Events package and monitorclient package contribution

10. References

Public

OTelematica Instituut, 2004

AADAD D

A~ b

© oo~ N

10

10

10

10
11
11
11
12

13

13
14
14

16

Page 3 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

11

1.2

13

1.4

2.1

2.2

Public

Introduction

Scope

This document applies to the Monitoring Infrastructure (M1S). The MISis atoolkit for software
developers. It provides libraries and tools for local and remote monitoring of eventsin applications and for
graphical representation of those events. It enables visualization of the internal behaviour of technology
towards a broad range of audiences.

Purpose

This document provides a comprehensive architectural description of the MIS, using a number of different
viewsto depict different aspects of the system. It intends to capture and convey the significant architectural
decisions that have been made on the system.

Overview

Section 2 describes the stakeholders of this architecture. Section 3 gives an example of an application that
was built using the MIS. Section 4 describes the architectural goals and constraints. Section 5 gives a short
introduction about architectural views. Sections 6 to 9 present the views on the architecture.

Colour convention

To make aclear distinction between the MIS artefacts (libraries and tools) and the context in which those
artefacts are used (domain specific applications) the following colour conventionisused in all figures of
this document:

[] misartefact
l:l Domain specific artefact

Identification of stakeholders

Purpose of the system

As applications grow more complex in the sense that they involve more distributed components and new
technologies or paradigms, it becomes harder to explain the underlying process for demonstration or
instruction purposes. A way to gain insight into the behaviour of applicationsis to visualize the interactions
among the different actors or components that are engaged in a process. Seeing the executed process helps
to understand how the application works under the hood and what is new or innovative in a particular
approach.

The purpose of the MISisto offer an infrastructure for monitoring eventsin applications and trand ation of
these events into a graphical representation. The MIS offers libraries and tools that assist developersto
implement graphical monitors for their own domain specific applications.

Stakeholders

The stakeholders that have been considered while formulating this architecture are shown in Figure 1.
Stakeholders can be categorized based on their activities with respect to the MIS (shown aslayersin the
figure).

OTelematica Instituut, 2004 Page 4 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

Public

MIS
MIS
< implements Development

Stakeholders

7 5, MIS Developer
& S
¥ %
o Monitored Monitor

implements > monitors > System < implements Development
. . Stakeholders

Monitor Developer Monitored System

Developer
A C A i
watches 0, &0/ explains

Monitor
Usage

Stakeholders

Monitor Audience Monitor User

% Stakeholder

[Artefact

Figure 1 Stakeholders

MIS devel opment stakeholders

The MIS Developer is responsible for development and maintenance of the infrastructure. He creates a set
of tools and libraries that capture the generic behaviour of (graphical) application monitoring.

Monitor Development stakeholders

The Monitor Development stakeholders are the direct users of the MIS as an end product. They are
software devel opers and they use the components and libraries of the MIS to implement monitors for their
own domain specific applications. They use the MIS at design time. To enable external monitoring an
application has to produce events that reflect its state. The Monitored System Developer instruments his
application by inserting code that produces events. The Monitor Developer develops a graphical
representation of the system and implements the logic that receives and processes the events. Monitor
Devel opment stakeholders want to focus on their domain specific issues.

Monitor usage stakeholders

The Monitor User uses amonitor to explain an application to the Monitor Audience. The Monitor User uses
the MIS at runtime without being aware of the existence of the MIS at al. The Monitor User is only aware
of the Monitor and the Monitored System that were created by the Monitor Development stakeholders.

Monitor example

Figure 2 shows an example of a Monitor application in aweb browser. The Monitor represents a platform
(Monitored System) for the distribution of high-quality digital content from and to the home environment.
Moving yellow rectangles represent the messages that are flowing around in the platform, illustrating the
system dynamics. The Monitor User can explain the platform to the Monitor Audience. He can use the
timing controls to tweak the speed of the Monitor or use the step-mode to go through the events step-by-
step. Note that this monitor can switch between various views that are targeted towards different kinds of

OTelematica Instituut, 2004 Page 5 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

4.2

Public

audiences. It also contains asimulator that can play various predefined scenarios.

File Edit View Favorites Tools Help

T
‘IJ"

He
Qe - - [x] & 2 ‘ - search 7 Favories (g Medis {‘é| - - 2 3

Address |@_"[e |unks

input meter

Consumer View

Remote control

Consumer

TV Database

2 Request to
browse the

pme network

Gateway
| My Content
Basket

Stereo

Show My Home Server
Detail

Eventsource selection Timing control

View selection

0 [Commerver]

@ Platform monitoring [Stepmode [Step)

@ Technology View
@ DRM View

& [[[@ Trusted sites

Figure2 Monitor example

Architectural Goals and Constraints

Goals

Main goal of this architectureis to serve as a means for education and communication. The MIS is an open
source project. The architecture is used to introduce new people to the system. The people may be new
members of the development team (M 1S devel opment stakeholders) or Monitor Devel opment stakehol ders
who download the open source distribution. This document will be available on the MIS open source
project website [MIS SF].

Constraints

The following key requirements and system constraints have a significant bearing on the architecture of the
MIS:

e TheMISisan open source project under the GNU LPGL license [GNU]. This has impact on decisions
with respect to inclusion and redistribution of external software libraries or components. All relevant
licenses have to be studied carefully.

OTelematica Instituut, 2004 Page 6 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

Public

* TheMISisintended for instruction purposes only. It will not support high reliability or industry
strength monitoring of mission critical processes.

e The MISmust be easy to use with respect to development and deployment of monitors and monitored
systems. It must facilitate the needs of Monitor Devel opment stakeholders.

Introduction to views

A view is arepresentation of aset of system elements and the relationships associated with them. Different
views support different goals and uses. Because the MISis atoolkit for software developers both the
architecture of domain specific applications that use the M1S and the architecture of the MIS itself are
relevant. The Runtime View (section 6) describes the architecture of domain specific applications
developed by Monitor Development stakeholders. As such it provides information to the MIS Devel oper
about the context in which the MIS artefacts will be used. The Monitor Design View (section 7) describes
the architecture of the design tools that are offered to the Monitor Developer. The Logical View (section 8)
focuses on the architecture of the MIS itself. It describes the decomposition of the system in packages as
well as the behaviour of the system. The Detailed Runtime View (section 9) shows how the packages
specified in the Logica View contribute to the architecture of domain specific applications in the Runtime
View.

Runtime View

Introduction

The Runtime View of the architecture describes the runtime components and their interactions. The
Runtime View is based on the Component and Connector view type as described in [PCL]. It is similar to
the Structura Viewpoint described in [|EEE-1471].

It isimportant to realise that the delivered artefacts of the Monitoring Infrastructure are software libraries
and development tools. The Runtime View in this section does not describe those libraries and tools, but
intends to show the context in which they will be used and deployed by Monitor Devel opment
stakeholders. The relation between the components shown in the Runtime View and the MIS artefactsis
described in section 9.

The Runtime View is relevant for:

e The MIS Developer as aguideine for software design and implementation. MI1S Devel opers have to be
aware of the application context of the librariesin order to optimise the usability.

e The Monitor Developer and Monitored System Developer, because it shows the various component
interconnection possibilities that can be applied in their monitor applications at runtime.

Figure 3 shows the concepts of the Component and Connector View, asthey are defined in [PCL].

The connector is an instance of a connector type and each component is an instance of a component type. A
connector type represents aform of interaction between components. A component has (one or more) ports
(interfaces). Connectors are characterized by their roles. A role can be thought of as the interface of a
connector. It defines the way in which components may use the connector to carry out interactions. An
attachment attaches the ports of component instances to roles of connector instances.

With respect to this document the abstraction level of component ports connecting to connector roles at
attachment pointsis too detailed. The connector role concept will not be used. In this document component
ports will be directly attached to connectors.

OTelematica Instituut, 2004 Page 7 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

attachment

connector
component 1 ./ \. component 2

~—— _/

component 1-port connector-role 1 component 2-port

connector-role 2

Figure 3 Component and Connector View concepts

Section 6.2 describes the component types and connector types that will be used in the presentation of the
Runtime View. The Runtime View itself is provided in section 6.3.

6.2 Component types and connector types
Client and server component types with arequest-reply connector type

Figure 4 shows how a client and a server component are connected using a request-reply connector. The
request-port of the client is attached to the request-reply connector. A server has areply-port. The reply-
port is connected to the other side of the request-reply connector. The client sends events over its request
port to the server. The event description is a parameter of the request. The server processes the event and
replies with an appropriate message to its reply-port.

request-reply connector
client server

request-port reply-port

Figure 4 Client server connection over arequest-reply connector

Publisher and subscriber component types with a publish-subscribe connector type

Figure 5 shows how a publisher and a subscriber component are connected using a publish-subscribe

connector.
publish-subscribe connector
publisher —O

publication-port subscription-port

Figure5 Publisher subscriber connection over a publish-subscribe connector

A publisher has a publication-port. The publication-port is atached to publish-subscribe-connector. A

Public OTelematica Instituut, 2004 Page 8 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

6.3

Public

subscriber has a subscription-port. The subscription-port is connected to the connector. The publisher
sends events to its publication-port and the subscriber receives the event. The publisher is unaware of the
subscriber. The publish-subscribe connector decouples subscribers from publishers.

View description

Figure 6 shows the Runtime View. It shows components that pass events, either through a publish-
subscribe connector or through a request-reply connector. This figure is one example out of many possible
configurations of components and connectors that Monitor Devel opment stakeholders might apply. The
example covers most possible usage scenarios.

Monitored
System 1

Monitored
System 2

Monitor
Client 1

Key Component types: Connector types:
|:| publisher publish-subscribe u attachment
O subscriber request-reply :r________:l application
C) server binding
@ client

Figure 6 Runtime View

The Monitor Server in the figureis a domain specific server application that usesthe MIS libraries. It isan
example of an application that is developed by a Monitor Developer. It manipulates incoming events (e.g.
filtering, queuing) before publishing them to the publish-subscribe connector. The Monitor Server can
receive events over a request-reply connector (in this case it acts as a server component) or over a publish-
subscribe connector (in this caseit acts as a subscriber component). The Monitor Server can aso publish
events over a publish-subscribe connector thereby acting as a publisher component.

Monitored System 1 is adomain specific application that uses the MIS libraries to send events to a Monitor
Server over arequest-reply connector (acting as a client component).

Monitored System 2 is a domain specific application that publishes events directly to the publish-subscribe
connector without any intermediate manipulation (acting as a publisher component).

The Monitor Client is connected to the publish-subscribe connector. It is acting as a subscriber component.
It receives the events published by the other components and typically will show graphical updatesin aweb
browser.

OTelematica Instituut, 2004 Page 9 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

7.
7.1

7.2

Public

Monitor Design View

Introduction

The Monitor Design View describes the design tool (Monitor Client Design Tool) that the MIS offersto the
Monitor Developer. The view is based on the Pipe-and-Filter Style as described in [PCL].

The Monitor Design View is relevant for:

e TheMIS Developer as aguiddine for software design and implementation of the Monitor Client
Design Tool.

e The Monitor Developer as afunctional description and a usage guide of the Monitor Client Design
Tool.

View description

The Monitor Client Design Tool addresses the problem of trand ation of incoming eventsinto graphical
updates. Complex applications will often require complex visualizations (with alarge number of graphical
objects) and generate many types of events. Programming this many to many mapping can be atedious job.
The Monitor Client Design Tool supports the Monitor Developer at design time by generating all mapping
logic based on amapping that is defined in a XML file.

The Monitor Client Design Tool is best represented as afilter that transforms input files into a dedicated
package (monitorclient package). This package can subsequently be deployed in aweb browser
environment. Thisisshown in Figure7.

SVG-file-port .)
Monitor Client

Design Tool monitorclient-port

mapping-file-port

Key |:| filter component

O input port
u output port

Figure7 Monitor Design View

The Monitor Client Design Tool is executed from the command line. On its SV G-fileinput port it expects
an SVG file that contains the graphical representation of the Monitored System. SV G isa XML based W3C
standard that is programmabl e though java or JavaScript and is very extensive in terms of describing
graphical concepts [SVG]. On the mapping-file input port the Monitor Client Design Tool expects an XML
file that represents the many-to-many mapping of events to JavaScript function calls. These function calls
will trigger graphical updates of the SVG document at runtime. On the monitorclient output port the
Monitor Client Design Tool will create a monitorclient package that contains al mapping logic and
graphicsin an easy to deploy format. The structure of this generated monitorclient package is explainedin
section 8.3.2.

Logical View

Introduction

Thelogical view of the architecture describes the decomposition of the system into packages. For each
relevant package it introduces the architecturally significant classes and describes their responsibilities, as

OTelematica Instituut, 2004 Page 10 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

8.2

8.3

8.3.1

Public

well as afew very important relationships, operations, and attributes. Thelogica view is based on the
logical viewpoint as described by the Rational Unified Process [RUP].

The logical view is especialy relevant for the MI1S Devel oper as a guideline for software design and
implementation.

Section 8.2 describes the Logical View and section 8.3 describes some of the packages in more detail.

View description
The logical view of the MISis shownin Figure 8.

1 1 1

monitor
events - eventrouter [€-=---=-=-=-=-=-1 Tont
publishes/ subscribes to clien

subscribes to

uses ~ creates
1 1
monitor
utilities client
design

Figure8Logical View

The events package is a software library that will be used by Monitor Developers. They will integrate this
library into their applications, both for Monitors and Monitored Systems. It has classes for event
publishing, event delaying, queuing and event filtering. The events package is explored in more detail in
section 8.3.1.

The utilities package is a software library that offers asimulator that can publish events that are specified in
aplay list. The Monitor Developer can use this package at design time for testing purposes. The Monitor
Developer can aso include asimulator in the final Monitor, to enable the Monitor User to show predefined
event sequences to the Monitor Audience. The play list isdefined in adedicated XML file format.

The eventrouter package is a middleware package for event routing. The eventrouter decouples event
publishers from event subscribers. The eventrouter uses the concept of topics. Applications can publish
events to topics on the eventrouter. Clients can subscribe to topics, and receive the events that are published
towards those topics. The eventrouter package is a ready-to-depl oy web application package that is used by
Monitor Devel opers. An off-the-shelf component is used for the eventrouter: the pushlet framework
[PUSHLET]. Theinternals of the eventrouter are not architecturaly significant. The runtime interface of
the eventrouter is described in section 9.2.

The monitorclientdesign package represents the Monitor Client Design Tool as described in section 7. The
Monitor Devel oper uses thistool at design time. It is acommand line tool for code generation that is not
used as part of aMonitor at runtime.

The monitorclient package is the bundled result of code generation with the Monitor Client Design Tool.
The Monitor Developer will in most cases integrate this logic in aMonitor Client. The monitorclient
package is explored in more detail in section 8.3.2.

Package descriptions

Events package
Figure 9 shows the most important classes of this package.

The Event class models an event. An event has atype, and it is possible to attach datato an event. Event
data are passed as name-value pair strings. An event can be serialised to XML.

OTelematica Instituut, 2004 Page 11 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

8.3.2

Public

An EventServer isthe concept that clients use to publish events. The actual event publication is either
directly delegated to an EventPublisher or stored in a BlockingQueue for intermediate event storage. This
depends on the settings of the “synchronous’ parameter. If synchronous event publication is desired the
thread that calls the EventServer for publishing eventsis blocked until the event isreally published. In case
of asynchronous event publication the thread returns immediately. The events are stored in the
BlockingQueue. Another behavioura parameter isthe “slegptime”. Specifying a sleeptime will hold
publication of the event. The event is only published after the sleeptime has elapsed. This can be used to
delay the event flow to aMonitor in the case that the speed of subsequent eventsis so high that the
resulting graphical updatesin the Monitor are too fast for perception by human beings. The EventServer
can be configured with aURL and atopic, representing the destination of the event.

The EventPublisher does the actua publication of the events. It can handle various types of interfaces. The
description of the runtime interface and connection protocolsis given in section 9.3.

The EventQueueReader retrieves the events from the BlockingQueue and calls the EventPublisher to
publish the event. The speed of emptying the queueis determined by the sleep time.

Ewent

=etTypeltype: String) : void

addDatainame: String,walue: String) : void

Eventtlap

fo XML : String getEventaevent: Event) : List]

EwentSenrer EwentPublisher
publishEvent{event: Event) : woid . publishEventlevent: Event) : void
zetSynchronoussynchronous: boolean) : woid zetSleepTimelzleepTime: double): wvaid
setSleepTimelsleep Time: double) : woid

BlockingQueue

EventllueucReade

enqueuelobject: Object): void
dequevelobject: Object): Object

rni) : void

Figure 9 Architecturally relevant classesfor event package

The EventMap specifies how to handle incoming events. An EventMap can be registered with an
EventServer. It has an entry that describes criteriafor incoming events and for each entry it has a
specification of zero or more outgoing events. Before publishing an event the EventServer compares this
event with the criteriafor incoming eventsin the EventMap. If amatch is found the outgoing events as
described in the EventMap will be published instead of the original event. This enables modification of
parameters of incoming events before publishing them, or inserting additional events, or filtering out
events. The specification of event mappingsisread from a XML based file format.

Monitorclient package
Figure 10 showsthe Logical View of the monitorclient package.

OTelematica Instituut, 2004 Page 12 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004
monitorclient
1 1
\\‘ event
parser

Public

Figure 10 Logical View, monitor client package

The monitorclient package can be decomposed into 3 sub packages:

The graphics package contains the graphical representation of the Monitored System in SV G format
[SVG]. It aso has an API to manipulate those graphics (e.g. colour and shape updates, starting and
stopping of animations). The structure of the graphics package is generated at design time by the Monitor
Client Design Tool and is therefore domain independent. The SV G graphics are domain specific. The API
isfor alarge part determined by the SV G standard, but it can be extended with user-defined functions.

The eventparser package parses the incoming events. An off-the-shelf component is used for the
eventparser: XML for Script [XFS].

The eventhandler package contains the logic that maps incoming eventsto function calls of the API of the
graphics package. The eventhandler logic was generated at design time with the Monitor Client Design
Tool. The structure and the interface of the eventhandler package are domain independent. The
implementation is domain specific.

The monitorclient package isintended to run in aweb browser environment using JavaScript as scripting
language.

Detailed Runtime View

Introduction

The Detailed Runtime View zooms in on the Runtime View of section 6. It shows how the packages
specified in the Logica View contribute to the architecture of domain specific applications. It consists of 2
separate sections. section 9.2 describes how the Event Router package of the Logical View contributes to
the publish-subscribe connector and section 9.3 will show how the events package and the monitorclient
package of the Logical View contribute to the publisher, subscriber, client and server components of the
Runtime View.

The Runtime View is relevant for:

¢ TheMIS Developer as aguideine for software design and implementation. M1S Devel opers have to be
aware of the application context of the librariesin order to optimise the usability.

* The Monitor Developer and Monitored System Developer, because it shows the various component
interconnection possibilities that can be applied in their monitor applications at runtime.

OTelematica Instituut, 2004 Page 13 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

9.2

9.3

Public

View description: Eventrouter package contribution

Figure 5 and Figure 6 use a publish-subscribe connector as an abstraction. The Logical View mentions a
concrete eventrouter package that realises this abstract connector. The Detailed Runtime View replaces the
representation of the publish-subscribe connector in Figure 5 by the runtime representation of the
eventrouter package and the required connectors. Thereforeit is necessary to understand the runtime
interface of the eventrouter. The runtime representation of the eventrouter is shown in Figure 11.

postlet O———

eventrouter

pushlet O——

Figure 11 Runtimerepresentation of the pushlet event router

The eventrouter has 2 runtime interface ports. The postlet port is used for event publication. The pushlet
port is used for subscription to events. Clients communicate with the eventrouter by means of HTTP
request with a specific parameter format. Clients that want to publish events can send aHTTP request to
the postlet port. Clients can subscribe to events by sending a request to the pushlet port. After receiving the
request for subscription on the pushlet port the eventrouter does not close the connection but keepsit open
and pushes fresh eventsto the client. Thisis atechnique similar to HTTP streaming as for exampleis used
in multimedia viewing applications. For amore detailed explanation and interface specification see
[PUSHLET].

The eventrouter contribution to the Detailed Runtime View is shown in Figure 12 (compare this figure with

Figure5).
publisher (O mmmmmmme(O—{ eventrouter —O O @

publication-port subscription-port
request-reply connector request-reply connector
postlet-port pushlet-port

Figure 12: Detailed Runtime View, eventrouter package contribution

The publication-port of the publisher is connected to the postlet-port of the eventrouter by a request-reply
connector. The subscription port of the subscriber is connected to the pushlet-port of the eventrouter by a
request-reply connector.

View description: Events package and monitorclient package contribution

To express the contribution of the events package and the monitorclient package to the Detailed Runtime
View it is necessary to have the runtime representation of those components.

The events package as described in the logical view directly maps to a runtime component. The runtime
representation of the events package is shown in Figure 13.

OTelematica Instituut, 2004 Page 14 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

O mislet-request

mislet-reply O——— events —O postlet

—O pushlet

Figure 13 Runtimerepresentation of the events package

The events package has 4 ports. The pushlet port can be used to subscribe to an event router. The postlet
port can be used to send events to an event router. The mislet-request port can be used to call aserver over
arequest-reply (in this case HTTP) connector where the event is passed as a collection of parametersin the
so-called mislet-format. The mislet-reply port can receive events in the mislet format.

The monitorclient package as described in the logical view also maps to a runtime component. The runtime
representation of the monitorclient package is shown in Figure 14.

eventhandler O—— monitorclient

Figure 14 Runtimerepresentation of the monitor client package

The only port of the monitorclient package is the eventhandler port. This port can receive incoming events.

The Detailed Runtime View is best described by adding the runtime representation of the events package
and the monitorclient package to the Runtime View of Figure 6. Theresult is shown in Figure 15.

The Monitor Server uses the events package for multiple purposes. It can receive events over arequest-
reply connector at the mislet-reply port. It can subscribe to events using the pushlet port. It can publish
events to the publish-subscribe connector using the postlet port.

Monitored System 1 uses the events package to send events to the midet-request port. Thisport is
connected to the mislet-reply port of the Monitor Server.

Monitored System 2 uses the events package to publish eventsto the publish-subscribe connector using the
postlet port.

The Monitor Client is connected to the publish-subscribe connector. It is acting as a subscriber component.
It receives the events published by the other components. It calls the eventhandler port of the monitorclient
package to parse the incoming event and to show graphical updatesin the web browser.

The example in Figure 15 illustrates how Monitor Devel opment stakehol ders can use the events package
and the monitor package in their applications. The packages handle all distributed communication and
timing issues, so the developers only have to concentrate on the domain specific aspects of their monitoring
applications.

Public OTelematica Instituut, 2004 Page 15 of 16

Monitoring Infrastructure (MIS) Version: 11

Software Architecture Document Date: 8-10-2004

ffffffffffffffffffffffffffffffff

Monitored System 1

E Monitor Server ‘ Monitored system 2
' I
mislet-request st i
; mislet-reply postlet
B events —i}
events M pushiet i —o
o—{ events —Ji} postiot

monitor
client

eventhandler

Monitor Client 1

Key Component types: Connector types:
|:| publisher - - publish-subscribe u attachment
O subscriber — request-reply :r________:l application
@ server binding
@ client

Figure 15: Detailed Runtime View, events and monitor client packages contribution

10. References

[MIS SF] MIS project website at SourceForge, http://mis.sf.net.

[GNU] GNU LGPL license, http://www.gnu.org/copyleft/lesser.html.

[PCL] P. Clements, F. Bachman et a., Documenting Software Architectures, Addison-Wesley
2003.

[|[EEE-1471] B. Sherlund et d., IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, 2000.

[RUP] Rational Unified Process, http://www-306.ibm.com/software/awdtools/rup/
[PUSHLET] The pushlet framework, http://www.pushl ets.com/

[SVG] Scalable Vector Graphics, http://www.w3.org/Graphics/SVG/

[XFS XML for Script, http://xmljs.sourceforge.net/index.html

Public OTelematica Instituut, 2004 Page 16 of 16

